A New Methodology for Reducing Yaw Rate Estimation Error
نویسندگان
چکیده
منابع مشابه
A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملA New Methodology for Reducing Brittleness in Genetic Programming
Genetic programming systems typically use a fixed training population to optimize programs according to problem-specific fitness criteria. The best-of-run programs evolved by these systems frequently exhibit optimal (or nearoptimal) performance in competitive survival environments explicitly represented by the training population. Unfortunately, subsequent performance of these programs is often...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA New Methodology for Vibration Error Compensation of Optical Encoders
Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error...
متن کاملReport: Reducing the error rate of a Cat classifier
The following report discusses my work at the IDIAP from 06.2007 to 08.2007. This work had for objective to build a classifier for cat images, and focused on difficult images. Two approaches were implemented; one was using the Chamfer distance metric for matching, and the other learned models of our training images and used the Kullback-Leibler divergence as a metric of image comparison. Noise ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: World Journal of Engineering and Technology
سال: 2017
ISSN: 2331-4222,2331-4249
DOI: 10.4236/wjet.2017.51002